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ABSTRACT: Thermal radiation greatly affects the tran-
sient thermal response of translucent materials in many
practical applications, such as radiative heat shields and
ignition and flame spreads for translucent plastics. How-
ever, because of the complexities that transients impose, less
work has been done on the transient analysis of combined
radiation–conduction heat transfer than on steady-state
analysis. In this study, the transient heat transfer analysis of
a polycarbonate (PC) layer was done with the use of the
two-flux method and implicit finite difference formulations.
The radiative and conductive properties of PC available in
the literature, together with computer implementation pre-

pared on the basis of the two-flux method and implicit finite
difference formulations, were used to obtain the transient
thermal response of a PC layer. On the basis of these results,
we show that, compared to the conduction-alone case, the
PC layer responded faster when radiation effects were con-
sidered. It is also shown that the internal reflectivity of
boundaries had a great effect on the thermal response of the
layer, whereas the thermal conductivity had a minor influ-
ence. VVC 2009 Wiley Periodicals, Inc. J Appl Polym Sci 112: 3313–
3321, 2009
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INTRODUCTION

In translucent materials, energy can be transferred
internally by radiation in addition to conduction.
Because radiative heat flux propagates very rapidly,
it can provide energy within a material more quickly
than diffusion by heat conduction. As a result, tran-
sient temperature distribution including radiation
can be much more different than that by conduction
alone. For instance, when a translucent material is at
high temperature, placed in a high-temperature sur-
rounding, or subjected to large incident radiation,
the radiative thermal effects become more dominant.
Radiative effects in heat transfer have practical uses,
including ignition and flame spread for translucent
plastics, heat transfer analyses of porous ceramic
insulation systems, removal of ice layers, formation
and tempering of glass windows, evaluation of ce-
ramic components, thermal protection coatings, and
other scientific and engineering applications that
involve the heating and formation of optical
materials.

When a hot translucent layer is cooled by radia-
tion to a lower temperature surrounding, energy is
also lost within the body, and the interior can cool
more rapidly than by conduction alone. On the other

hand, if the radiative surroundings are hotter than
the layer, the reverse effect can happen to the layer.
In fact, depending on whether the radiative sur-
roundings are hotter or cooler than the layer, this
surrounding medium can act as a negative or posi-
tive internal heat source. Furthermore, a significant
internal emission will also occur when the material
is hot. This means that energy can be transmitted
from one part of the layer to other parts by radiation
in a larger quantity than by conduction alone. Thus,
the transient (and steady-state) thermal response can
be much different when both radiation and conduc-
tion are included. However, the quantity of energy
transmitted by radiation depends on the transpar-
ency of the layer. The more radiation energy the
layer absorbs and scatters, the less transparent the
layer is.
A glance at the literature already available on

transient heat transfer reveals the fact that the tran-
sient thermal response when both radiation and con-
duction are included has been studied much less
than the steady-state thermal response. The reason
lies in the complexities that appear in transient radi-
ation heat transfer. Some of the studies on transient
heat transfer by radiation were done by Siegel.1–3 In
those studies, various methods, including direct inte-
gration1 and the two-flux method,2,3 were used to
calculate radiative effects. The two-flux method was
also used in the study in ref. 4 to analyze transient
heat transfer for combined radiation and conduction
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when different boundary conditions and radiation
parameters were used. In ref. 5, the authors discuss
the transient thermal response of a glass layer con-
sidering both radiation and conduction. The direct
integration method was used the study in ref. 6 to
analyze the transient heat transfer of nongrey plas-
tics to investigate the effects of various parameters,
such as spectrum shape and the convective heat
transfer coefficient. This method was also used in
the study in ref. 7 to model the semitransparent
layer of an advanced fiber polymer. The scattering
effects in the transient thermal response of a poly-
amide 6T layer were studied in ref. 8. Other numeri-
cal methods for the computation of radiative effects
in transient heat transfer are discrete ordinates,9–12

Hottel’s zonal method,13–15 radiative diffusion,16 dif-
ferential approximation,17 various expansion meth-
ods,18 and the Monte Carlo method.19

The thermal behavior of polycarbonate (PC),
which is widely used in aerospace applications, is of
significant importance because thermal stresses,
which are present in such applications, can play a
role in design considerations. Also, because of the
use of PC in some contemporary automobile wind-
shields and the presence of high temperatures in the
production process, it is important to understand
the transient behavior of this polymer. In this study,
we performed the transient heat transfer analysis of
a semitransparent PC layer for combined radiation
and conduction numerically by the application of
the two-flux and implicit finite difference methods.
The major focus of this article is the effect of the
conductivity and reflectivity on the transient heat
transfer of the PC layer. In addition, the quality and
quantity of radiation effects on the transient and
steady-state thermal responses of the PC layer are
discussed. To this end, the results obtained by con-
duction alone are compared with combined conduc-
tion–radiation results. Also, results obtained with
the use of various values of external radiative flux
are compared.

COMBINED CONDUCTION–RADIATION
EQUATIONS OF HEAT TRANSFER

Consider the semitransparent layer shown in Figure
1 as a heat-conducting, gray-emitting, absorbing,
and isotropically scattering medium whose refractive
index is greater than 1. This layer can exchange radi-
ation energy with the radiative surroundings at both
ends. Furthermore, the layer can be subjected to a
constant temperature, a constant heat flux, and con-
vection at either end. The general form of a one-
dimensional heat transfer equation is

qc
@T x; tð Þ

@t
¼ @

@x
k Tð Þ @T x; tð Þ

@x

� �
þ _qgen x; tð Þ � @ _qr

@x
(1)

where q is the density, c is the specific heat, T is the
absolute temperature, x is the coordinate in the
direction across the layer, t is the time, k is the ther-
mal conductivity, _qgen is the heat generation source
(per unit volume), and _qr is the radiative heat flux.
There are several methods for computing the gradi-
ent of radiative heat flux appearing in eq. (1). We
computed this term, which represents radiation
effects, with the use of the two-flux method. In ac-
cordance with the Mile–Eddington approximation,
we have20

@~qr X; tð Þ
@X

¼ s 1� xð Þ 4n2H4 X; tð Þ � ~G X; tð Þ� �
(2)

where ~qr is the dimensionless radiative heat flux, X
is the dimensionless coordinate, s is the optical
thickness, x is the scattering albedo, n is the refrac-
tive index, H is the dimensionless temperature (with
respect to a reference temperature), and ~G is a
dimensionless radiative flux function, which is
related to the radiative heat flux as follows:3

@ ~G X; tð Þ
@X

¼ �3 s~qr X; tð Þ (3)

By assuming the initial temperature of the layer
(Ti) as the reference temperature, we could write the
following expressions for the dimensionless parame-
ters:

~qr ¼ _qr
�
rT4

i ; H ¼ T=Ti (4)

where r is the Stefan–Boltzmann constant. Equation
(1) can also be written in a dimensionless form by
the introduction of dimensionless time (y), the dimen-
sionless coordinate, and a radiation–conduction

Figure 1 Geometry, material properties, and boundary
conditions for the semitransparent layer whose transient
thermal response was analyzed.
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parameter as follows in eq. (5) and substituting
them into eq. (1) (see ref. 3):

h ¼ 4rT3
i t
�
qcL; X ¼ x=L; N ¼ k

�
4rT3

i L (5)

where L is the thickness of the layer and N is the
conduction–radiation parameter. However, because
thermal conductivity (and even density and specific
heat) can be a function of temperature, the dimen-
sionless form of eq. (1) would not be appropriate for
deriving a general finite difference formulation.
Thus, differential eq. (1) and the corresponding
boundary conditions are presented in a normal man-
ner (with appropriate dimensions), whereas differen-
tial eqs. (2) and (3) and their corresponding
boundary conditions are dimensionless.

Equations (1)–(3) are the governing differential
equations of transient heat transfer for combined
conduction–radiation in one dimension. A glance at
these equations shows that obtaining the solution of
these differential equations requires one initial con-
dition and four boundary conditions. The initial con-
dition can be simply the distribution of temperature
at t ¼ 0 throughout the layer. In this article, we
assume that the layer is at an initial uniform temper-
ature. This temperature is also used as the reference
temperature [see eqs. (4) and (5)]. On the other
hand, the four boundary conditions can be divided
into two sets: the first set is the boundary conditions
corresponding to conduction at either end of the
layer, and the second set is the one concerning radi-
ation at the two ends of the layer.

The simplest conduction boundary condition is
constant temperature, which we can express by set-
ting a given value for the temperature at any end of
the layer. For the two other boundary condition
types, which are convection and constant flux, we
should note that energy is not absorbed at the
boundary of the layer because the boundary itself
has no volume for absorption. Consequently, in the
absence of a spectral region in which the material is
assumed opaque, the conduction boundary condi-
tions are the same as with no radiation. Thus, the
convection boundary condition is expressed in the
following form:

k
@T

@x

���� x ¼ 0
¼ �h1 Tg1 � T 0; tð Þ� �

(6)

k
@T

@x

���� x ¼ L
¼ �h2 T L; tð Þ � Tg2

� �
(7)

where h1 and h2 are the convective heat transfer
coefficients and Tg1 and Tg2 are the gas temperatures
for convection at x ¼ 0 and x ¼ L, respectively. If
any of the boundaries are subjected to a constant
flux, the boundary condition can be written in the

same form as eqs. (6) and (7) except that the right-
hand side is replaced by the desired constant flux.
We can write the radiation boundary conditions at

both ends of the layer by considering the incident
and reflected fluxes in the following form:21

~G 0; tð Þ ¼ 4
1� qo

1� qi
~qr1 � 2

1þ qi

1� qi
~qr 0; tð Þ (8)

~G 1; tð Þ ¼ 4
1� qo

1� qi
~qr2 þ 2

1þ qi

1� qi
~qr 1; tð Þ (9)

where qi and qo are the internal and external reflec-
tivities, respectively, at the two boundaries of the
layer and ~qr1 and ~qr2 are the dimensionless external
radiation fluxes at x ¼ 0 and x ¼ L, respectively. If
the temperature distribution is known throughout
the layer, these two boundary conditions can be
applied to obtain a unique solution for the differen-
tial eqs. (2) and (3). To be more precise, to obtain the
solution of the transient heat transfer of a layer
when radiation is included in addition to conduc-
tion, we need to solve differential eqs. (1)–(3) sub-
jected to the boundary conditions mentioned in eqs.
(6)–(9) and an initial condition, which in this article
is a uniform temperature distribution at t ¼ 0.

ANALYSIS METHODOLOGY AND
NUMERICAL FORMULATION

Numerical analysis of the transient heat transfer of a
layer in the absence of radiation can be done by the
use of the conventional finite difference method.
However, when radiation effects are included in
heat transfer equations by the insertion of the gradi-
ent of radiative heat flux in the energy equation [eq.
(1)], two more differential equations are added to
the governing relations [eqs. (2) and (3)]. The term
H,4 appearing in eq. (2), makes these three equation
coupled. Moreover, this term causes the governing
differential equations to be nonlinear and the solu-
tion procedure to be extremely complex. To avoid
the complexities appearing in nonlinear solution
methods, we used a simple but effective method to
solve these equations as follows: the solution proce-
dure began with an initial condition, which was the
temperature distribution throughout the layer.
Because the temperature distribution was known,
the differential eqs. (2) and (3) could be solved by
the use of the boundary conditions presented in eqs.
(8) and (9), and thus, the radiative flux function and
dimensionless radiative heat flux could be com-
puted. The gradient of radiative flux was then com-
puted with eq. (2), and consequently, eq. (1) was
solved with the usual finite difference method to
obtain the temperature distribution at the next time
step. The whole procedure was repeated by the use
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of the temperature distribution that was just com-
puted. This procedure did not include any nonlinear
algorithm (e.g., the Newton–Raphson method),
whereas the results based on it were proven to be
accurate.4 There were two main subprocedures in
the computational process of each time increment,
which were as follows:

1. The first subprocedure was the calculation of
the gradient of radiative flux by the solution of
the differential eqs. (2) and (3) with the bound-
ary conditions in eqs. (8) and (9) and the tem-
perature distribution of the previous time step.
This was done with the common fourth-order
Runge–Kutta method.22 However, the boundary
conditions required for the application of the
common Runge–Kutta method should include
values of the two unknown functions (which
were the radiative flux function and dimension-
less radiative heat flux here) for a given value
of an independent variable (e.g., x ¼ 0). Because
the boundary conditions for the differential eqs.
(2) and (3) included the values of unknown
functions at x ¼ 0 and x ¼ 1, a shooting proce-
dure, in addition to the common Runge–Kutta
method, was also required to satisfy both

boundary conditions at x ¼ 0 and x ¼ 1. An
algorithm for the use of the shooting method is
described in ref. 23. However, this method is
usually time consuming because the numerical
solution of the differential equation should be
done several times to satisfy both boundary
conditions. A representative method for the
shooting procedure is to express each unknown
function as a linear combination of two other
unknown functions. The coefficient appearing
in the combination is determined such that both
boundary conditions are satisfied. A compre-
hensive discussion on this technique is
explained in ref. 4. The advantage of this tech-
nique is that the numerical solution of the dif-
ferential equation needs to be done only once;
consequently, the solution procedure is less
time consuming.

2. The second subprocedure was the use of the
usual finite difference method together with the
known values of the gradient of radiative heat
flux, which was computed in the first subproce-
dure, to compute the temperature at the next
time step. The implicit finite difference form of
the energy equation for an interior grid point in
the absence of heat generation source is5

qc
T x; tþ Dtð Þ � T x; tð Þ

Dt
¼ 1� wð Þ k xð ÞT x� Dx; tð Þ � k xþ Dxð Þ þ k xð Þð ÞT x; tð Þ þ k xþ Dxð ÞT xþ Dx; tð Þ

Dxð Þ2

þ w
k xð ÞT x� Dx; tþ Dtð Þ � k xþ Dxð Þ þ k xð Þð ÞT x; tþ Dtð Þ þ k xþ Dxð ÞT xþ Dx; tþ Dtð Þ

Dxð Þ2 � @ _qr
@x

���� x; t ð10Þ

where Dt is the time increment, Dx is the distance
between two successive grid points, and w is a
weight coefficient for an implicit formulation repre-
senting the effect of the next time temperature. If
the weight coefficient vanishes, the explicit form is
obtained. Nonzero values for the weight coefficient
results in implicit form. The thermal conductivity
was assumed to be a function of x. This assumption
enabled us to model materials with temperature-de-
pendent thermal conductivity. On the other hand,
the discrete form of the convection boundary condi-
tions mentioned in eqs. (6) and (7) or any other
form of boundary condition (e.g., constant flux and
constant temperature) was written for the two grid
points located in the boundaries of the layer.
Writing eq. (10) for all interior grid points together
with the two equations for the boundaries formed a
tridiagonal linear system of equations in which the
temperatures at the next time step were the
unknowns.

The finite difference formulation, the two-flux
method equations, and the methodology described
in this section were used to prepare a computer
implementation for the transient analysis of a layer
for combined radiative–conductive heat transfer. The
results presented in this article were obtained by the
use of this computer implementation.

NUMERICAL RESULTS FOR A PC LAYER

In this section, the numerical results obtained on the
bases of the computer implementation are presented.
In the first step, the computer code was verified. To
this end, some of the analyses done by Siegel in ref.
3 were repeated by the use of the computer imple-
mentation, and the results were compared. Figure 2
illustrates the temperature distribution during the
transient of a layer subjected to convection at both
ends when various values of scattering albedos were
used. Other material properties are also presented in
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the figure. The charts shown in Figure 1 coincide
exactly with those presented in ref. 3. Several other
analyses were also done, and the results were com-
pared with the ones obtained by Siegel in ref. 3.
These results are not presented here for brevity, but
they all coincided with the results presented in
ref. 3.

Consider a PC layer with a thickness of 0.3 cm
that is at an initial temperature of 300 K and is sub-
jected to radiative heat source at both ends. The
thermal conductivity of the PC layer provided in
handbooks includes a range of values instead of a
single value. The main reason for variation in ther-
mal conductivity is the variation of density and the
speed of injection.24 In accordance with the results
obtained by Lasance in ref. 24, the thermal conduc-
tivity of PC lies in the range 0.19–0.22 W m�1 K�1.

Although the thermal conductivity affects the solu-
tion to differential eq. (1), the density and specific
heat do not change the solution. In fact, the two pa-
rameters may only change the ratio of dimensionless
time and the usual time expressed with dimensions
[see eq. (6)]. To be more precise, presenting the
results (including temperature distribution, radiative
heat flux, and conductive heat flux) as functions of
dimensionless time makes them more general. One
may obtain results for a given material by using the
corresponding values of density and specific heat.
Radiative parameters such as scattering and the

absorption coefficient are discussed much less than
conductive parameters such as the thermal conduc-
tivity. A procedure for calculating the scattering and
absorption coefficients of different polymers were
proposed by Wallner et al. in refs. 25 and 26. These
results include the values of the scattering

Figure 3 Transient thermal response of the PC layer insu-
lated at X ¼ 0 and cooled at X ¼ 1 by convection. The
parameters were k ¼ 0.19, h1 ¼ 0, h2 ¼ 40, Tg2 ¼ 0.93Ti,
qi ¼ 0, qo ¼ 0, ~qr1 ¼ 1.4,4 and ~qr2 ¼ 0.93.4

Figure 2 Temperature distribution in the transient inter-
val for the layer subjected to convection at both ends with
two values of scattering albedos. The parameters were
h1 ¼ 0, h2 ¼ 1, Tg1 ¼ 0.5Ti, q

i ¼ 0, qo ¼ 0, ~qr1 ¼ 1.5,4 and
~qr2 ¼ 0.5.4

Figure 4 Radiative and conductive heat fluxes during the transient interval for the same analysis as shown in Figure 3:
(a) radiative and (b) conductive heat fluxes.
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coefficient25 and absorption coefficients26 as func-
tions of the layer thickness. On the basis of these
results, the values of optical thickness and scattering
albedo for a PC layer with a thickness of 0.3 cm are
approximately 1.08 and 0.0167, respectively. In addi-
tion, the value of the refractive index for a PC layer
is 1.59.25 With these material properties, the transient
thermal response of the PC layer subjected to vari-
ous conductive and radiative boundary conditions
was examined, and the results are fully discussed.

Figure 3 illustrates the temperature distribution in
the transient interval for the PC layer when the ther-
mal conductivity was assumed to be 0.19 W m�1

K�1. The layer was heated by radiation at x ¼ 0 and
cooled by convection at x ¼ L. When y ¼ 0.8 the
temperatures were within 1% of steady state, which
showed a relatively short transient interval. In addi-

tion, the temperature at x ¼ L decreased in the tran-
sient interval, whereas at x ¼ 0, the temperature
increased rapidly until y ¼ 4 and then continued to
decrease for the rest of the transient interval. How-
ever, in accordance with the steady-state tempera-
ture distribution, the overall result of the radiative
and convective boundary conditions was the cooling
of the whole layer. Figure 3 also includes the results
obtained by conduction alone. In accordance with
Figure 3, the temperature distribution was smoother
when only conduction was considered. In this case,
the temperature changed rapidly at the beginning of
the transient interval; However, the steady-state tem-
perature distribution, which was T ¼ 0.93Ti, was
reached at a very slow rate: the temperature at x ¼ 0
and y ¼ 2 was still 0.932.
The radiative and conductive heat fluxes for this

analysis (for the conduction–radiation case) are
shown in Figure 4(a,b). A comparison between the
two figures shows that the radiative heat transfer
was much greater than the conductive heat transfer
throughout the transient interval. Although the tem-
perature at x ¼ 0 decreased because y ¼ 0.08, the
radiative heat flux increased during the whole tran-
sient interval.
So far in this study, the reflectivity was assumed

to be zero at the two ends of the layer. The transient
thermal response of the PC layer with the same ma-
terial properties and boundary conditions as those in
Figure 3 but with a value of 0.5 for qi is presented in
Figure 5. A comparison of Figures 3 and 5 shows
that the thermal response of the layer totally
changed when qi was nonzero: the temperature at x
¼ 0 increased throughout the transient interval,
whereas at x ¼ L, it decreased at first but continued
to increase for the rest of the transient interval. In
addition, the steady-state temperature distribution

Figure 5 Transient thermal response of the PC layer insu-
lated at X ¼ 0 and cooled at X ¼ 1 by convection. The
parameters were k ¼ 0.19, h1 ¼ 0, h2 ¼ 40, Tg2 ¼ 0.93Ti,
qi ¼ 0.5, qo ¼ 0, ~qr1 ¼ 1.4,4 and ~qr2 ¼ 0.93.4

Figure 6 Radiative and conductive heat fluxes in the transient interval for the same analysis as shown in Figure 5: (a)
radiative and (b) conductive heat fluxes.

3318 SAFAVISOHI ET AL.

Journal of Applied Polymer Science DOI 10.1002/app



was above the initial temperature distribution except
in the small part of the layer between X ¼ 0.93 and
X ¼ 1. Consequently, the layer was heated (in most
part) for qi ¼ 0.5, whereas it was cooled for qi ¼ 0.
This may have been the direct effect of internal
reflectivity, which did not let the radiation energy
leave the layer and kept the layer warmer. Another
effect of internal reflectivity was that the tempera-
ture variation during the transient interval and the
temperature gradient through the layer were greater
when qi was 0.5.

Figure 6 presents the radiative and conductive
heat fluxes during the transient interval for the anal-
ysis whose transient temperature distribution is
shown in Figure 5. Although the temperature
increased at x ¼ 0 during the transient interval, the
radiative heat flux decreased at this point. On the
other hand, the radiative heat flux increased at x ¼ L

in the transient interval, whereas the temperature
did not show unique behavior at this point. A com-
parison between Figures 6(a) and 4(a) shows that the
variation of radiative heat flux across the layer was
greater for qi ¼ 0.5.
As mentioned earlier, the thermal conductivity of

PC varied from 0.19 to 0.21 W m�1 K�1. The two
previous analyses were done with the lower value
for the thermal conductivity. To present a more com-
prehensive study of the transient thermal response
of a PC layer, these analyses were repeated this time
with the assumption that the thermal conductivity
was 0.21 W m�1 K�1. Figure 7 illustrates the differ-
ence between the temperatures obtained by k ¼ 0.19
and k ¼ 0.21 throughout the layer for various values
of dimensionless time. The dimensionless tempera-
tures were used to compute the temperature differ-
ence in this figure. In accordance with the figure, the

Figure 7 Difference between the temperatures obtained by k ¼ 0.19 and k ¼ 0.21 over the dimensionless coordinate for
various values of dimensionless time. qi ¼ (a) 0 and (b) 0.5.

Figure 8 Temperature distribution for various values of the dimensionless external radiation flux at x ¼ L. The other
parameters were k ¼ 0.19, h1 ¼ 0, h2 ¼ 0, qi ¼ 0, qo ¼ 0, and ~qr1 ¼ 0.9.4 (a) Steady state and (b) y ¼ 0.01.
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maximum absolute difference occurring was 0.6% or
1.8 K. Thus, the results obtained with the two
extreme values of thermal conductivity were approx-
imately the same. In addition, the patterns of the
curves in Figure 7(a,b) are similar for smaller values
of dimensionless time.

To investigate the effects of the external radiative
fluxes on the transient of a PC layer, a series of anal-
yses were done with the convection boundary condi-
tion at both ends with a zero convective heat
transfer coefficient. Consequently, the layer did not
exchange conductive heat at the boundaries, and the
external sources of energy were only produced by
external radiative heat fluxes at the two ends. The
radiative heat flux at X ¼ 0 was the same in all of
these analyses, whereas various values were used at
X ¼ 1. Figure 8 illustrates the temperature distribu-
tion for y ¼ 0.01 and the steady state with various
values of the dimensionless external radiation flux at
x ¼ L. The steady-state temperature profiles were
approximately parallel with a constant distance
between the curves. Also, the steady-state tempera-
tures were less than the initial temperature for ~qr2 ¼
2.8561, 3.3215, and 3.8416, which means that the
whole layer was cooled despite the relatively large
values of the dimensionless external radiation flux at
x ¼ L.

Figure 9 shows the variation of temperature over
time for the same analyses. In the transient interval,
the temperature decreased at X ¼ 0 for all four val-
ues of the dimensionless external radiation flux at x
¼ L. On the other hand, the temperature increased
at X ¼ 1 for larger values of the dimensionless exter-
nal radiation flux at x ¼ L. In addition, a glance at
Figure 9(a,b) shows that the steady state was
reached much faster for ~qr2 ¼ 4.4205. More generally,

the transient interval was longer when the dimen-
sionless external radiation flux at x ¼ L decreased.
This was what we expected because increasing the
value of the dimensionless external radiation flux at
x ¼ L made the effects of radiation more dominant,
and consequently, the thermal response was faster.

CONCLUSIONS

The transient heat transfer analysis of a PC layer
was done with the two-flux method and implicit
finite difference formulations. The conductive
boundary condition used in these analyses was con-
vection, whereas various values of external radiative
heat fluxes were used for the radiative boundary
conditions. In addition, because the thermal conduc-
tivity of PC available in the literature included a
range of values, the two extreme values of the ther-
mal conductivity were used in the analyses.
As expected, the transient thermal responses of

the PC layer obtained by consideration of the radia-
tion effects were different from those obtained by
conduction alone. The thermal response of the PC
layer was relatively fast and the response was faster
than in the conduction-alone case because the inter-
nal radiative heat flux was greater than the internal
conductive heat flux. In general, this faster transient
response could be used in applications where the
material is required to heat (or cool) quickly. On the
other hand, the temperature gradient was higher in
the conduction–radiation case than in the conduc-
tion-alone case for some boundary conditions (see
Fig. 3), whereas the reverse was true for other
boundary conditions.3 In conclusion, whether the
inclusion of radiation effects led to a higher

Figure 9 Temperature variation over time at the two ends of the layer. The parameters were the same as those listed for
Figure 8. X ¼ (a) 0 and (b) 1.
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temperature gradient (and, thus, higher thermal
stresses) or a lower gradient depended on the
boundary conditions.

The effect of the internal reflectivity of the boun-
daries was shown to be magnificent. The layer ther-
mal response for qi ¼ 0 totally differed from that for
qi ¼ 0.5: the temperature generally increased for qi

¼ 0.5, whereas it decreased for qi ¼ 0. Also, temper-
ature changed more in the transient interval and
throughout the layer for qi ¼ 0.5.

The temperature distributions obtained by the use
of the two extreme values of thermal conductivity
were proven to have little difference. On the other
hand, various values of the external radiative heat
flux at one end, when the external radiative heat
flux at the other end was kept unchanged, resulted
in different temperature distributions: the tempera-
ture increased when the external radiative heat flux
increased such that the temperature profiles of the
steady state were approximately parallel. Further-
more, the transient interval was shorter for larger
values of external radiative heat flux.

NOMENCLATURE

c Specific heat (J kg�1 K�1)
~G Dimensionless radiative flux function
h1, h2 Convective heat transfer coefficients (W

m�2 K�1)
k Thermal conductivity (W m�1 K�1)
L Thickness of the layer (m)
n Refractive index
N Conduction–radiation parameter (k/

4rT3
i L)

_qgen Heat generation source (per unit volume)
_qr Radiative heat flux
~qr Dimensionless radiative heat flux ( _qr/rT4

i )
_qr1, _qr2 External radiation fluxes at x ¼ 0 and x ¼

L, respectively
~qr1, ~qr2 Dimensionless external radiation fluxes at

x ¼ 0 and x ¼ L, respectively
t Time (s)
T Absolute temperature (K)
Tg1, Tg2 Gas temperatures for convection at x ¼ 0

and x ¼ L, respectively (K)
Ti Initial temperature of the layer (K)
Ts1, Ts2 Gas temperatures for radiation at x ¼ 0

and x ¼ L, respectively (K)
w Weight coefficient for implicit formulation

representing the effect of next time
temperature

x Coordinate in the direction across the
layer (m)

X Dimensionless coordinate (x/L)

Dt Time increment
Dx Distance between two successive grid

points
x Scattering albedo
q Density (kg/m3)
qi, qo Internal and external reflectivities,

respectively
r Stefan–Boltzmann constant (W m�2 K�4)
s Optical thickness
H Dimensionless temperature (T/Ti)
y Dimensionless time (4rT3

i t/qcL)
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